CVE-2007-3037 - Improper Control of Generation of Code ('Code Injection')

Severity

40%

Complexity

49%

Confidentiality

81%

Microsoft Windows Media Player 7.1, 9, 10, and 11 allows remote attackers to execute arbitrary code via a skin file (WMZ or WMD) with crafted header information that causes a size mismatch between compressed and decompressed data and triggers a heap-based buffer overflow, aka "Windows Media Player Code Execution Vulnerability Parsing Skins."

Microsoft Windows Media Player 7.1, 9, 10, and 11 allows remote attackers to execute arbitrary code via a skin file (WMZ or WMD) with crafted header information that causes a size mismatch between compressed and decompressed data and triggers a heap-based buffer overflow, aka "Windows Media Player Code Execution Vulnerability Parsing Skins."

CVSS 2.0 Base Score 4. CVSS Attack Vector: network. CVSS Attack Complexity: high. CVSS Vector: (AV:N/AC:H/Au:N/C:P/I:P/A:N).

Demo Examples

Improper Control of Generation of Code ('Code Injection')

CWE-94

This example attempts to write user messages to a message file and allow users to view them.


               
}
echo "Message Saved!<p>\n";
include($MessageFile);

While the programmer intends for the MessageFile to only include data, an attacker can provide a message such as:


               
message=%3C?php%20system(%22/bin/ls%20-l%22);?%3E

which will decode to the following:


               
<?php system("/bin/ls -l");?>

The programmer thought they were just including the contents of a regular data file, but PHP parsed it and executed the code. Now, this code is executed any time people view messages.

Notice that XSS (CWE-79) is also possible in this situation.

Improper Control of Generation of Code ('Code Injection')

CWE-94

edit-config.pl: This CGI script is used to modify settings in a configuration file.


               
}
# code to add a field/key to a file goes here
# code to set key to a particular file goes here
# code to delete key from a particular file goes here
eval($code);# this is super-efficient code, especially if you have to invoke# any one of dozens of different functions!
handleConfigAction($configfile, param('action'));
print "No action specified!\n";

The script intends to take the 'action' parameter and invoke one of a variety of functions based on the value of that parameter - config_file_add_key(), config_file_set_key(), or config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval() is a powerful way of doing the same thing in fewer lines of code, especially when a large number of functions or variables are involved. Unfortunately, in this case, the attacker can provide other values in the action parameter, such as: add_key(",","); system("/bin/ls"); This would produce the following string in handleConfigAction(): config_file_add_key(",","); system("/bin/ls"); Any arbitrary Perl code could be added after the attacker has "closed off" the construction of the original function call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's payload is activated. This particular manipulation would fail after the system() call, because the "_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the attack because the payload has already been activated.

Demo Examples

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-119

This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.


               
}
strcpy(hostname, hp->h_name);/*routine that ensures user_supplied_addr is in the right format for conversion */

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-119

This example applies an encoding procedure to an input string and stores it into a buffer.


               
}
return dst_buf;
die("user string too long, die evil hacker!");
else dst_buf[dst_index++] = user_supplied_string[i];
dst_buf[dst_index++] = ';';
/* encode to &lt; */

The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands.

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-119

The following example asks a user for an offset into an array to select an item.


               
}
printf("You selected %s\n", items[index-1]);

The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-119

In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method


               
}
return value;// check that the array index is less than the maximum// length of the array
value = array[index];// get the value at the specified index of the array
// if array index is invalid then output error message// and return value indicating error
value = -1;

However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.


               
...// check that the array index is within the correct// range of values for the array

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-119

Windows provides the _mbs family of functions to perform various operations on multibyte strings. When these functions are passed a malformed multibyte string, such as a string containing a valid leading byte followed by a single null byte, they can read or write past the end of the string buffer causing a buffer overflow. The following functions all pose a risk of buffer overflow: _mbsinc _mbsdec _mbsncat _mbsncpy _mbsnextc _mbsnset _mbsrev _mbsset _mbsstr _mbstok _mbccpy _mbslen

Overview

Type

Microsoft

First reported 17 years ago

2007-08-14 21:17:00

Last updated 6 years ago

2018-10-16 16:47:00

Affected Software

Microsoft windows_media_player 7.1

7.1

Microsoft Windows Media Player 9

9

Microsoft Windows Media Player 10

10

Microsoft Windows Media Player 11

11

Stay updated

ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.

Get in touch

If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.