64%
99%
81%
OCaml before 4.03.0 does not properly handle sign extensions, which allows remote attackers to conduct buffer overflow attacks or obtain sensitive information as demonstrated by a long string to the String.copy function.
OCaml before 4.03.0 does not properly handle sign extensions, which allows remote attackers to conduct buffer overflow attacks or obtain sensitive information as demonstrated by a long string to the String.copy function.
CVSS 3.0 Base Score 9.1. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H).
CVSS 2.0 Base Score 6.4. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (AV:N/AC:L/Au:N/C:P/I:N/A:P).
The following code checks validity of the supplied username and password and notifies the user of a successful or failed login.
}}print "Login Successful";print "Login Failed - incorrect password";print "Login Failed - unknown username";
In the above code, there are different messages for when an incorrect username is supplied, versus when the username is correct but the password is wrong. This difference enables a potential attacker to understand the state of the login function, and could allow an attacker to discover a valid username by trying different values until the incorrect password message is returned. In essence, this makes it easier for an attacker to obtain half of the necessary authentication credentials.
While this type of information may be helpful to a user, it is also useful to a potential attacker. In the above example, the message for both failed cases should be the same, such as:
"Login Failed - incorrect username or password"
This code tries to open a database connection, and prints any exceptions that occur.
}openDbConnection();//print exception message that includes exception message and configuration file locationecho 'Check credentials in config file at: ', $Mysql_config_location, '\n';
If an exception occurs, the printed message exposes the location of the configuration file the script is using. An attacker can use this information to target the configuration file (perhaps exploiting a Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing the database. The attacker may also be able to replace the file with a malicious one, causing the application to use an arbitrary database.
In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file.
}
return userAccount;}userAccount = (BankAccount)queryResult.getObject(accountNumber);Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);
The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database.
This code stores location information about the current user:
}...Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString());
When the application encounters an exception it will write the user object to the log. Because the user object contains location information, the user's location is also written to the log.
The following is an actual MySQL error statement:
Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/includes/database.inc on line 4
The error clearly exposes the database credentials.
This code displays some information on a web page.
Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>
The code displays a user's credit card and social security numbers, even though they aren't absolutely necessary.
The following program changes its behavior based on a debug flag.
} %>
The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set to true .
This code uses location to determine the user's current US State location.
First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml:
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible:
deriveStateFromCoords(userCurrLocation);
While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in.
This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.
}
strcpy(hostname, hp->h_name);/*routine that ensures user_supplied_addr is in the right format for conversion */
This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).
This example applies an encoding procedure to an input string and stores it into a buffer.
}
return dst_buf;die("user string too long, die evil hacker!");
else dst_buf[dst_index++] = user_supplied_string[i];dst_buf[dst_index++] = ';';
/* encode to < */
The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands.
The following example asks a user for an offset into an array to select an item.
}printf("You selected %s\n", items[index-1]);
The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method
}
return value;// check that the array index is less than the maximum// length of the array
value = array[index];// get the value at the specified index of the array// if array index is invalid then output error message// and return value indicating errorvalue = -1;
However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.
...// check that the array index is within the correct// range of values for the array
Windows provides the _mbs family of functions to perform various operations on multibyte strings. When these functions are passed a malformed multibyte string, such as a string containing a valid leading byte followed by a single null byte, they can read or write past the end of the string buffer causing a buffer overflow. The following functions all pose a risk of buffer overflow: _mbsinc _mbsdec _mbsncat _mbsncpy _mbsnextc _mbsnset _mbsrev _mbsset _mbsstr _mbstok _mbccpy _mbslen
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.