21%
39%
48%
Multiple integer overflows in the (1) v9fs_xattr_read and (2) v9fs_xattr_write functions in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allow local guest OS administrators to cause a denial of service (QEMU process crash) via a crafted offset, which triggers an out-of-bounds access.
Multiple integer overflows in the (1) v9fs_xattr_read and (2) v9fs_xattr_write functions in hw/9pfs/9p.c in QEMU (aka Quick Emulator) allow local guest OS administrators to cause a denial of service (QEMU process crash) via a crafted offset, which triggers an out-of-bounds access.
CVSS 3.0 Base Score 4.4. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.0/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
CVSS 2.0 Base Score 2.1. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (AV:L/AC:L/Au:N/C:N/I:N/A:P).
The following image processing code allocates a table for images.
...
This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
The following code excerpt from OpenSSH 3.3 demonstrates a classic case of integer overflow:
}for (i = 0; i < nresp; i++) response[i] = packet_get_string(NULL);
If nresp has the value 1073741824 and sizeof(char*) has its typical value of 4, then the result of the operation nresp*sizeof(char*) overflows, and the argument to xmalloc() will be 0. Most malloc() implementations will happily allocate a 0-byte buffer, causing the subsequent loop iterations to overflow the heap buffer response.
Integer overflows can be complicated and difficult to detect. The following example is an attempt to show how an integer overflow may lead to undefined looping behavior:
}bytesRec += getFromInput(buf+bytesRec);
In the above case, it is entirely possible that bytesRec may overflow, continuously creating a lower number than MAXGET and also overwriting the first MAXGET-1 bytes of buf.
In this example the method determineFirstQuarterRevenue is used to determine the first quarter revenue for an accounting/business application. The method retrieves the monthly sales totals for the first three months of the year, calculates the first quarter sales totals from the monthly sales totals, calculates the first quarter revenue based on the first quarter sales, and finally saves the first quarter revenue results to the database.
}
return 0;// Variable for sales revenue for the quarter// Calculate quarterly total// Calculate the total revenue for the quarter
However, in this example the primitive type short int is used for both the monthly and the quarterly sales variables. In C the short int primitive type has a maximum value of 32768. This creates a potential integer overflow if the value for the three monthly sales adds up to more than the maximum value for the short int primitive type. An integer overflow can lead to data corruption, unexpected behavior, infinite loops and system crashes. To correct the situation the appropriate primitive type should be used, as in the example below, and/or provide some validation mechanism to ensure that the maximum value for the primitive type is not exceeded.
}
...// Calculate quarterly total// Calculate the total revenue for the quarter
Note that an integer overflow could also occur if the quarterSold variable has a primitive type long but the method calculateRevenueForQuarter has a parameter of type short.
In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method
}
return value;// check that the array index is less than the maximum// length of the array
value = array[index];// get the value at the specified index of the array// if array index is invalid then output error message// and return value indicating errorvalue = -1;
However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.
...// check that the array index is within the correct// range of values for the array
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.