78%
99%
115%
A vulnerability in certain IPv4 fragment-processing functions of Cisco Remote PHY Software could allow an unauthenticated, remote attacker to impact traffic passing through a device, potentially causing a denial of service (DoS) condition. The vulnerability is due to the affected software not validating and calculating certain numerical values in IPv4 packets that are sent to an affected device. An attacker could exploit this vulnerability by sending malformed IPv4 traffic to an affected device. A successful exploit could allow the attacker to disrupt the flow of certain IPv4 traffic passing through an affected device, which could result in a DoS condition.
A vulnerability in certain IPv4 fragment-processing functions of Cisco Remote PHY Software could allow an unauthenticated, remote attacker to impact traffic passing through a device, potentially causing a denial of service (DoS) condition. The vulnerability is due to the affected software not validating and calculating certain numerical values in IPv4 packets that are sent to an affected device. An attacker could exploit this vulnerability by sending malformed IPv4 traffic to an affected device. A successful exploit could allow the attacker to disrupt the flow of certain IPv4 traffic passing through an affected device, which could result in a DoS condition.
CVSS 3.0 Base Score 7.5. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H).
CVSS 2.0 Base Score 7.8. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (AV:N/AC:L/Au:N/C:N/I:N/A:C).
The following image processing code allocates a table for images.
...
This code intends to allocate a table of size num_imgs, however as num_imgs grows large, the calculation determining the size of the list will eventually overflow (CWE-190). This will result in a very small list to be allocated instead. If the subsequent code operates on the list as if it were num_imgs long, it may result in many types of out-of-bounds problems (CWE-119).
This code attempts to calculate a football team's average number of yards gained per touchdown.
...
The code does not consider the event that the team they are querying has not scored a touchdown, but has gained yardage. In that case, we should expect an ArithmeticException to be thrown by the JVM. This could lead to a loss of availability if our error handling code is not set up correctly.
This example attempts to calculate the position of the second byte of a pointer.
char * second_char = (char *)(p + 1);
In this example, second_char is intended to point to the second byte of p. But, adding 1 to p actually adds sizeof(int) to p, giving a result that is incorrect (3 bytes off on 32-bit platforms). If the resulting memory address is read, this could potentially be an information leak. If it is a write, it could be a security-critical write to unauthorized memory-- whether or not it is a buffer overflow. Note that the above code may also be wrong in other ways, particularly in a little endian environment.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.