CVE-2019-11478 - Uncontrolled Resource Consumption

Severity

50%

Complexity

99%

Confidentiality

48%

Jonathan Looney discovered that the TCP retransmission queue implementation in tcp_fragment in the Linux kernel could be fragmented when handling certain TCP Selective Acknowledgment (SACK) sequences. A remote attacker could use this to cause a denial of service. This has been fixed in stable kernel releases 4.4.182, 4.9.182, 4.14.127, 4.19.52, 5.1.11, and is fixed in commit f070ef2ac66716357066b683fb0baf55f8191a2e.

Jonathan Looney discovered that the TCP retransmission queue implementation in tcp_fragment in the Linux kernel could be fragmented when handling certain TCP Selective Acknowledgment (SACK) sequences. A remote attacker could use this to cause a denial of service. This has been fixed in stable kernel releases 4.4.182, 4.9.182, 4.14.127, 4.19.52, 5.1.11, and is fixed in commit f070ef2ac66716357066b683fb0baf55f8191a2e.

CVSS 3.0 Base Score 7.5. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H).

CVSS 2.0 Base Score 5. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (AV:N/AC:L/Au:N/C:N/I:N/A:P).

Demo Examples

Uncontrolled Resource Consumption

CWE-400

The following example demonstrates the weakness.


               
}
}
}
...
Thread.currentThread().interrupt();// postpone response
...
new Thread(loop).start();
}
}
}
r.run();
...

There are no limits to runnables. Potentially an attacker could cause resource problems very quickly.

Uncontrolled Resource Consumption

CWE-400

This code allocates a socket and forks each time it receives a new connection.


               
}
pid = fork();

The program does not track how many connections have been made, and it does not limit the number of connections. Because forking is a relatively expensive operation, an attacker would be able to cause the system to run out of CPU, processes, or memory by making a large number of connections. Alternatively, an attacker could consume all available connections, preventing others from accessing the system remotely.

Uncontrolled Resource Consumption

CWE-400

In the following example a server socket connection is used to accept a request to store data on the local file system using a specified filename. The method openSocketConnection establishes a server socket to accept requests from a client. When a client establishes a connection to this service the getNextMessage method is first used to retrieve from the socket the name of the file to store the data, the openFileToWrite method will validate the filename and open a file to write to on the local file system. The getNextMessage is then used within a while loop to continuously read data from the socket and output the data to the file until there is no longer any data from the socket.


               
}
closeSocket(socket);
return(FAIL);
closeFile();
}
break;

This example creates a situation where data can be dumped to a file on the local file system without any limits on the size of the file. This could potentially exhaust file or disk resources and/or limit other clients' ability to access the service.

Uncontrolled Resource Consumption

CWE-400

In the following example, the processMessage method receives a two dimensional character array containing the message to be processed. The two-dimensional character array contains the length of the message in the first character array and the message body in the second character array. The getMessageLength method retrieves the integer value of the length from the first character array. After validating that the message length is greater than zero, the body character array pointer points to the start of the second character array of the two-dimensional character array and memory is allocated for the new body character array.


               
}/* process message accepts a two-dimensional character array of the form [length][body] containing the message to be processed */
}
return(SUCCESS);
return(FAIL);

This example creates a situation where the length of the body character array can be very large and will consume excessive memory, exhausting system resources. This can be avoided by restricting the length of the second character array with a maximum length check

Also, consider changing the type from 'int' to 'unsigned int', so that you are always guaranteed that the number is positive. This might not be possible if the protocol specifically requires allowing negative values, or if you cannot control the return value from getMessageLength(), but it could simplify the check to ensure the input is positive, and eliminate other errors such as signed-to-unsigned conversion errors (CWE-195) that may occur elsewhere in the code.


               
if ((length > 0) && (length < MAX_LENGTH)) {...}

Uncontrolled Resource Consumption

CWE-400

In the following example, a server object creates a server socket and accepts client connections to the socket. For every client connection to the socket a separate thread object is generated using the ClientSocketThread class that handles request made by the client through the socket.


               
}
} catch (IOException ex) {...}
serverSocket.close();
t.start();

In this example there is no limit to the number of client connections and client threads that are created. Allowing an unlimited number of client connections and threads could potentially overwhelm the system and system resources.

The server should limit the number of client connections and the client threads that are created. This can be easily done by creating a thread pool object that limits the number of threads that are generated.


               
}
} catch (IOException ex) {...}
serverSocket.close();
pool.execute(t);

Overview

First reported 5 years ago

2019-06-19 00:15:00

Last updated 5 years ago

2019-06-20 20:15:00

Affected Software

Linux Kernel

F5 Big-IP Advanced Firewall Manager (AFM)

F5 Big-IP Advanced Firewall Manager (AFM) 15.0.0

15.0.0

F5 Big-IP Access Policy Manager (APM)

F5 Big-IP Access Policy Manager (APM) 15.0.0

15.0.0

F5 Big-IP Application Acceleration Manager (AAM)

F5 Big-IP Application Acceleration Manager (AAM) 15.0.0

15.0.0

F5 Big-IP Link Controller

F5 Big-IP Link Controller 15.0.0

15.0.0

F5 Big-IP Policy Enforcement Manager (PEM)

F5 Big-IP Policy Enforcement Manager (PEM) 15.0.0

15.0.0

F5 Big-IP WebAccelerator

F5 Big-IP WebAccelerator 15.0.0

15.0.0

F5 Big-IP Application Security Manager (ASM)

F5 Big-IP Application Security Manager (ASM) 15.0.0

15.0.0

F5 Networks Big-IP Local Traffic Manager (LTM)

F5 Big-IP Local Traffic Manager (LTM) 15.0.0

15.0.0

F5 Big-IP Fraud Protection Service (FPS)

F5 Big-IP Fraud Protection Service (FPS) 15.0.0

15.0.0

F5 Big-IP Global Traffic Manager (GTM)

F5 Big-IP Global Traffic Manager (GTM) 15.0.0

15.0.0

F5 Big-IP Analytics

F5 Big-IP Analytics 15.0.0

15.0.0

F5 Big-IP Edge Gateway

F5 Big-IP Edge Gateway 15.0.0

15.0.0

F5 Big-IP Domain Name System (DNS)

F5 Big-IP Domain Name System (DNS) 15.0.0

15.0.0

Canonical Ubuntu Linux 12.04 ESM (Extended Security Maintenance)

12.04

Canonical Ubuntu Linux 14.04 ESM Edition

14.04

Canonical Ubuntu Linux 16.04 LTS (Long-Term Support)

16.04

Canonical Ubuntu Linux 18.04 LTS Edition

18.04

Canonical Ubuntu Linux 18.10

18.10

Canonical Ubuntu Linux 19.04

19.04

Red Hat Enterprise Linux Atomic Host

RedHat Enterprise MRG 2.0

2.0

Red Hat Enterprise Linux 5.0

5.0

Red Hat Enterprise Linux 6.0

6.0

Red Hat Enterprise Linux (RHEL) 7.0 (7)

7.0

Red Hat Enterprise Linux 8.0

8.0

Red Hat Enterprise Linux Extended Update Support (EUS) 7.4

7.4

Red Hat Enterprise Linux Extended Update Support (EUS) 7.5

7.5

Red Hat Virtualization 4.0

4.0

References

http://packetstormsecurity.com/files/153346/Kernel-Live-Patch-Security-Notice-LSN-0052-1.html

Third Party Advisory, VDB Entry

http://packetstormsecurity.com/files/154408/Kernel-Live-Patch-Security-Notice-LSN-0055-1.html

http://packetstormsecurity.com/files/154951/Kernel-Live-Patch-Security-Notice-LSN-0058-1.html

[oss-security] 20190628 Re: linux-distros membership application - Microsoft

[oss-security] 20190706 Re: linux-distros membership application - Microsoft

[oss-security] 20190706 Re: linux-distros membership application - Microsoft

[oss-security] 20191023 Membership application for linux-distros - VMware

[oss-security] 20191029 Re: Membership application for linux-distros - VMware

http://www.vmware.com/security/advisories/VMSA-2019-0010.html

RHSA-2019:1594

RHSA-2019:1602

RHSA-2019:1699

https://access.redhat.com/security/vulnerabilities/tcpsack

Third Party Advisory

https://cert-portal.siemens.com/productcert/pdf/ssa-462066.pdf

https://git.kernel.org/pub/scm/linux/kernel/git/davem/net.git/commit/?id=f070ef2ac66716357066b683fb0baf55f8191a2e

Mailing List, Patch, Vendor Advisory

https://github.com/Netflix/security-bulletins/blob/master/advisories/third-party/2019-001.md

Patch, Third Party Advisory

https://kb.pulsesecure.net/articles/Pulse_Security_Advisories/SA44193

Third Party Advisory

https://kc.mcafee.com/corporate/index?page=content&id=SB10287

https://psirt.global.sonicwall.com/vuln-detail/SNWLID-2019-0007

20190722 [SECURITY] [DSA 4484-1] linux security update

https://security.netapp.com/advisory/ntap-20190625-0001/

https://support.f5.com/csp/article/K26618426

Third Party Advisory

https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/SACKPanic

Mitigation, Third Party Advisory

VU#905115

https://www.oracle.com/security-alerts/cpujan2020.html

https://www.synology.com/security/advisory/Synology_SA_19_28

https://www.us-cert.gov/ics/advisories/icsa-19-253-03

Stay updated

ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.

Get in touch

If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.