78%
18%
98%
The bpf verifier in the Linux kernel did not properly handle mod32 destination register truncation when the source register was known to be 0. A local attacker with the ability to load bpf programs could use this gain out-of-bounds reads in kernel memory leading to information disclosure (kernel memory), and possibly out-of-bounds writes that could potentially lead to code execution. This issue was addressed in the upstream kernel in commit 9b00f1b78809 ("bpf: Fix truncation handling for mod32 dst reg wrt zero") and in Linux stable kernels 5.11.2, 5.10.19, and 5.4.101.
CVSS 3.1 Base Score 7.8. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H).
CVSS 2.0 Base Score 4.6. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (AV:L/AC:L/Au:N/C:P/I:P/A:P).
In the following code, the method retrieves a value from an array at a specific array index location that is given as an input parameter to the method
}
return value;// check that the array index is less than the maximum// length of the array
value = array[index];// get the value at the specified index of the array// if array index is invalid then output error message// and return value indicating errorvalue = -1;
However, this method only verifies that the given array index is less than the maximum length of the array but does not check for the minimum value (CWE-839). This will allow a negative value to be accepted as the input array index, which will result in a out of bounds read (CWE-125) and may allow access to sensitive memory. The input array index should be checked to verify that is within the maximum and minimum range required for the array (CWE-129). In this example the if statement should be modified to include a minimum range check, as shown below.
...// check that the array index is within the correct// range of values for the array
In the following Java example, a float literal is cast to an integer, thus causing a loss of precision.
int i = (int) 33457.8f;
This code adds a float and an integer together, casting the result to an integer.
$result = (int)$floatVal + $intVal;
Normally, PHP will preserve the precision of this operation, making $result = 4.8345. After the cast to int, it is reasonable to expect PHP to follow rounding convention and set $result = 5. However, the explicit cast to int always rounds DOWN, so the final value of $result is 4. This behavior may have unintended consequences.
In this example the variable amount can hold a negative value when it is returned. Because the function is declared to return an unsigned int, amount will be implicitly converted to unsigned.
}return amount;
If the error condition in the code above is met, then the return value of readdata() will be 4,294,967,295 on a system that uses 32-bit integers.
In this example, depending on the return value of accecssmainframe(), the variable amount can hold a negative value when it is returned. Because the function is declared to return an unsigned value, amount will be implicitly cast to an unsigned number.
}return amount;
If the return value of accessmainframe() is -1, then the return value of readdata() will be 4,294,967,295 on a system that uses 32-bit integers.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.