32%
18%
23%
A vulnerability was found in the Linux kernel in versions before v5.14-rc1. Missing size validations on inbound SCTP packets may allow the kernel to read uninitialized memory.
A vulnerability was found in the Linux kernel in versions prior to v5.14-rc1. Missing size validations on inbound SCTP packets may allow the kernel to read uninitialized memory.
CVSS 3.1 Base Score 3.3. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N).
CVSS 2.0 Base Score 2.1. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (AV:L/AC:L/Au:N/C:P/I:N/A:N).
This example demonstrates a shopping interaction in which the user is free to specify the quantity of items to be purchased and a total is calculated.
...
The user has no control over the price variable, however the code does not prevent a negative value from being specified for quantity. If an attacker were to provide a negative value, then the user would have their account credited instead of debited.
This example asks the user for a height and width of an m X n game board with a maximum dimension of 100 squares.
.../* board dimensions */die("No integer passed: Die evil hacker!\n");die("No integer passed: Die evil hacker!\n");die("Value too large: Die evil hacker!\n");
While this code checks to make sure the user cannot specify large, positive integers and consume too much memory, it does not check for negative values supplied by the user. As a result, an attacker can perform a resource consumption (CWE-400) attack against this program by specifying two, large negative values that will not overflow, resulting in a very large memory allocation (CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative values which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on how the values are treated in the remainder of the program.
The following example shows a PHP application in which the programmer attempts to display a user's birthday and homepage.
echo "Birthday: $birthday<br>Homepage: <a href=$homepage>click here</a>"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL. However, since the values are derived from an HTTP request, if an attacker can trick a victim into clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then the script will run on the client's browser when the web server echoes the content. Notice that even if the programmer were to defend the $birthday variable by restricting input to integers and dashes, it would still be possible for an attacker to provide a string of the form:
2009-01-09--
If this data were used in a SQL statement, it would treat the remainder of the statement as a comment. The comment could disable other security-related logic in the statement. In this case, encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential consequences when input validation is not used. Depending on the context of the code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be possible.
This function attempts to extract a pair of numbers from a user-supplied string.
}
die("Did not specify integer value. Die evil hacker!\n");/* proceed assuming n and m are initialized correctly */
This code attempts to extract two integer values out of a formatted, user-supplied input. However, if an attacker were to provide an input of the form:
123:
then only the m variable will be initialized. Subsequent use of n may result in the use of an uninitialized variable (CWE-457).
The following example takes a user-supplied value to allocate an array of objects and then operates on the array.
}list[0] = new Widget();die("Negative value supplied for list size, die evil hacker!");
This example attempts to build a list from a user-specified value, and even checks to ensure a non-negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0 and then try to store a new Widget in the first location, causing an exception to be thrown.
This application has registered to handle a URL when sent an intent:
}......
}
}int length = URL.length();...
The application assumes the URL will always be included in the intent. When the URL is not present, the call to getStringExtra() will return null, thus causing a null pointer exception when length() is called.
Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed once. However, the field is mistakenly set to true during static initialization, so the initialization code is never reached.
}
initialized = true;// perform initialization tasks
The following code intends to limit certain operations to the administrator only.
}$uid = ExtractUserID($state);# do stuffDoAdminThings();
If the application is unable to extract the state information - say, due to a database timeout - then the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even if the attacker cannot directly influence the state data, unexpected errors could cause incorrect privileges to be assigned to a user just by accident.
The following code intends to concatenate a string to a variable and print the string.
printf("%s", str);
This might seem innocent enough, but str was not initialized, so it contains random memory. As a result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0. The consequences can vary, depending on the underlying memory.
If a null terminator is found before str[8], then some bytes of random garbage will be printed before the "hello world" string. The memory might contain sensitive information from previous uses, such as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not be a big deal, but consider what could happen if large amounts of memory are printed out before the null terminator is found.
If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment is reached, leading to a segmentation fault and crash.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.