81%
22%
98%
Pterodactyl is an open-source game server management panel built with PHP 7, React, and Go. A malicious user can modify the contents of a `confirmation_token` input during the two-factor authentication process to reference a cache value not associated with the login attempt. In rare cases this can allow a malicious actor to authenticate as a random user in the Panel. The malicious user must target an account with two-factor authentication enabled, and then must provide a correct two-factor authentication token before being authenticated as that user. Due to a validation flaw in the logic handling user authentication during the two-factor authentication process a malicious user can trick the system into loading credentials for an arbitrary user by modifying the token sent to the server. This authentication flaw is present in the `LoginCheckpointController@__invoke` method which handles two-factor authentication for a user. This controller looks for a request input parameter called `confirmation_token` which is expected to be a 64 character random alpha-numeric string that references a value within the Panel's cache containing a `user_id` value. This value is then used to fetch the user that attempted to login, and lookup their two-factor authentication token. Due to the design of this system, any element in the cache that contains only digits could be referenced by a malicious user, and whatever value is stored at that position would be used as the `user_id`. There are a few different areas of the Panel that store values into the cache that are integers, and a user who determines what those cache keys are could pass one of those keys which would cause this code pathway to reference an arbitrary user. At its heart this is a high-risk login bypass vulnerability. However, there are a few additional conditions that must be met in order for this to be successfully executed, notably: 1.) The account referenced by the malicious cache key must have two-factor authentication enabled. An account without two-factor authentication would cause an exception to be triggered by the authentication logic, thusly exiting this authentication flow. 2.) Even if the malicious user is able to reference a valid cache key that references a valid user account with two-factor authentication, they must provide a valid two-factor authentication token. However, due to the design of this endpoint once a valid user account is found with two-factor authentication enabled there is no rate-limiting present, thusly allowing an attacker to brute force combinations until successful. This leads to a third condition that must be met: 3.) For the duration of this attack sequence the cache key being referenced must continue to exist with a valid `user_id` value. Depending on the specific key being used for this attack, this value may disappear quickly, or be changed by other random user interactions on the Panel, outside the control of the attacker. In order to mitigate this vulnerability the underlying authentication logic was changed to use an encrypted session store that the user is therefore unable to control the value of. This completely removed the use of a user-controlled value being used. In addition, the code was audited to ensure this type of vulnerability is not present elsewhere.
CVSS 3.1 Base Score 8.1. CVSS Attack Vector: network. CVSS Attack Complexity: high. CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H).
CVSS 2.0 Base Score 6.8. CVSS Attack Vector: network. CVSS Attack Complexity: medium. CVSS Vector: (AV:N/AC:M/Au:N/C:P/I:P/A:P).
This code snippet deserializes an object from a file and uses it as a UI button:
}in.close();
This code does not attempt to verify the source or contents of the file before deserializing it. An attacker may be able to replace the intended file with a file that contains arbitrary malicious code which will be executed when the button is pressed.
To mitigate this, explicitly define final readObject() to prevent deserialization. An example of this is:
throw new java.io.IOException("Cannot be deserialized"); }
In Python, the Pickle library handles the serialization and deserialization processes. In this example derived from [R.502.7], the code receives and parses data, and afterwards tries to authenticate a user based on validating a token.
}
raise AuthFail
Unfortunately, the code does not verify that the incoming data is legitimate. An attacker can construct a illegitimate, serialized object "AuthToken" that instantiates one of Python's subprocesses to execute arbitrary commands. For instance,the attacker could construct a pickle that leverages Python's subprocess module, which spawns new processes and includes a number of arguments for various uses. Since Pickle allows objects to define the process for how they should be unpickled, the attacker can direct the unpickle process to call Popen in the subprocess module and execute /bin/sh.
The following code excerpt reads a value from a browser cookie to determine the role of the user.
}}userRole = c.getValue();
The following code could be for a medical records application. It performs authentication by checking if a cookie has been set.
DisplayMedicalHistory($_POST['patient_ID']);}setcookie("authenticated", "1", time()+60*60*2);die("\n");
The programmer expects that the AuthenticateUser() check will always be applied, and the "authenticated" cookie will only be set when authentication succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie.
However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The attacker has bypassed the authentication.
In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data.
}}authenticated = true;
The following code samples use a DNS lookup in order to decide whether or not an inbound request is from a trusted host. If an attacker can poison the DNS cache, they can gain trusted status.
}trusted = true;trusted = false;
}trusted = true;
}trusted = true;
IP addresses are more reliable than DNS names, but they can also be spoofed. Attackers can easily forge the source IP address of the packets they send, but response packets will return to the forged IP address. To see the response packets, the attacker has to sniff the traffic between the victim machine and the forged IP address. In order to accomplish the required sniffing, attackers typically attempt to locate themselves on the same subnet as the victim machine. Attackers may be able to circumvent this requirement by using source routing, but source routing is disabled across much of the Internet today. In summary, IP address verification can be a useful part of an authentication scheme, but it should not be the single factor required for authentication.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.