53%
39%
23%
The function `OCSP_basic_verify` verifies the signer certificate on an OCSP response. In the case where the (non-default) flag OCSP_NOCHECKS is used then the response will be positive (meaning a successful verification) even in the case where the response signing certificate fails to verify. It is anticipated that most users of `OCSP_basic_verify` will not use the OCSP_NOCHECKS flag. In this case the `OCSP_basic_verify` function will return a negative value (indicating a fatal error) in the case of a certificate verification failure. The normal expected return value in this case would be 0. This issue also impacts the command line OpenSSL "ocsp" application. When verifying an ocsp response with the "-no_cert_checks" option the command line application will report that the verification is successful even though it has in fact failed. In this case the incorrect successful response will also be accompanied by error messages showing the failure and contradicting the apparently successful result. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2).
CVSS 3.1 Base Score 5.3. CVSS Attack Vector: network. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N).
CVSS 2.0 Base Score 4.3. CVSS Attack Vector: network. CVSS Attack Complexity: medium. CVSS Vector: (AV:N/AC:M/Au:N/C:N/I:P/A:N).
This code checks the certificate of a connected peer.
foo=SSL_get_verify_result(ssl);
// certificate looks good, host can be trusted
In this case, because the certificate is self-signed, there was no external authority that could prove the identity of the host. The program could be communicating with a different system that is spoofing the host, e.g. by poisoning the DNS cache or using a MITM attack to modify the traffic from server to client.
The following OpenSSL code obtains a certificate and verifies it.
}
// do secret things
Even though the "verify" step returns X509_V_OK, this step does not include checking the Common Name against the name of the host. That is, there is no guarantee that the certificate is for the desired host. The SSL connection could have been established with a malicious host that provided a valid certificate.
The following OpenSSL code ensures that there is a certificate and allows the use of expired certificates.
//do stuff
If the call to SSL_get_verify_result() returns X509_V_ERR_CERT_HAS_EXPIRED, this means that the certificate has expired. As time goes on, there is an increasing chance for attackers to compromise the certificate.
The following OpenSSL code ensures that there is a certificate before continuing execution.
// got a certificate, do secret things
Because this code does not use SSL_get_verify_results() to check the certificate, it could accept certificates that have been revoked (X509_V_ERR_CERT_REVOKED). The software could be communicating with a malicious host.
The following OpenSSL code ensures that the host has a certificate.
}
// got certificate, host can be trusted//foo=SSL_get_verify_result(ssl);//if (X509_V_OK==foo) ...
Note that the code does not call SSL_get_verify_result(ssl), which effectively disables the validation step that checks the certificate.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.