88%
20%
100%
Windows CSRSS Elevation of Privilege Vulnerability. This CVE ID is unique from CVE-2022-22047, CVE-2022-22049.
CVSS 3.1 Base Score 8.8. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:C/C:H/I:H/A:H).
CVSS 2.0 Base Score 7.2. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (AV:L/AC:L/Au:N/C:C/I:C/A:C).
This code temporarily raises the program's privileges to allow creation of a new user folder.
return True
return False#avoid CWE-22 and CWE-78lowerPrivileges()return False
While the program only raises its privilege level to create the folder and immediately lowers it again, if the call to os.mkdir() throws an exception, the call to lowerPrivileges() will not occur. As a result, the program is indefinitely operating in a raised privilege state, possibly allowing further exploitation to occur.
Evidence of privilege change:
seteuid(getuid());/* do some stuff */
}
// privileged code goes here, for example:// nothing to return
This code intends to allow only Administrators to print debug information about a system.
}ADMIN,USER,GUEST
}
}
break;break;System.out.println("You must be logged in to perform this command");
While the intention was to only allow Administrators to print the debug information, the code as written only excludes those the with the role of "GUEST". Someone with the role of "ADMIN" or "USER" will be allowed access, which goes against the original intent. An attacker may be able to use this debug information to craft an attack on the system.
This code allows someone with the role of "ADMIN" or "OPERATOR" to reset a user's password. The role of "OPERATOR" is intended to have less privileges than an "ADMIN", but still be able to help users with small issues such as forgotten passwords.
}ADMIN,OPERATOR,USER,GUEST
}
}
}break;break;break;System.out.println("You must be logged in to perform this command");
This code does not check the role of the user whose password is being reset. It is possible for an Operator to gain Admin privileges by resetting the password of an Admin account and taking control of that account.
The following code attempts to save four different identification numbers into an array.
id_sequence[3] = 456;
In the following example, it is possible to request that memcpy move a much larger segment of memory than assumed:
}
.../* if chunk info is valid, return the size of usable memory,* else, return -1 to indicate an error*/...
If returnChunkSize() happens to encounter an error it will return -1. Notice that the return value is not checked before the memcpy operation (CWE-252), so -1 can be passed as the size argument to memcpy() (CWE-805). Because memcpy() assumes that the value is unsigned, it will be interpreted as MAXINT-1 (CWE-195), and therefore will copy far more memory than is likely available to the destination buffer (CWE-787, CWE-788).
This example takes an IP address from a user, verifies that it is well formed and then looks up the hostname and copies it into a buffer.
}
strcpy(hostname, hp->h_name);/*routine that ensures user_supplied_addr is in the right format for conversion */
This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee that the hostname will not be larger than 64 bytes. If an attacker specifies an address which resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control flow to the attacker.
Note that this example also contains an unchecked return value (CWE-252) that can lead to a NULL pointer dereference (CWE-476).
This example applies an encoding procedure to an input string and stores it into a buffer.
}
return dst_buf;die("user string too long, die evil hacker!");
else dst_buf[dst_index++] = user_supplied_string[i];dst_buf[dst_index++] = ';';
/* encode to < */
The programmer attempts to encode the ampersand character in the user-controlled string, however the length of the string is validated before the encoding procedure is applied. Furthermore, the programmer assumes encoding expansion will only expand a given character by a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding procedure expands the string it is possible to overflow the destination buffer if the attacker provides a string of many ampersands.
In the following C/C++ example, a utility function is used to trim trailing whitespace from a character string. The function copies the input string to a local character string and uses a while statement to remove the trailing whitespace by moving backward through the string and overwriting whitespace with a NUL character.
}
return retMessage;// copy input string to a temporary stringmessage[index] = strMessage[index];// trim trailing whitespacelen--;// return string without trailing whitespace
However, this function can cause a buffer underwrite if the input character string contains all whitespace. On some systems the while statement will move backwards past the beginning of a character string and will call the isspace() function on an address outside of the bounds of the local buffer.
The following is an example of code that may result in a buffer underwrite, if find() returns a negative value to indicate that ch is not found in srcBuf:
}...
If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.