CVE-2022-23036 - Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

Severity

70%

Complexity

10%

Confidentiality

98%

Linux PV device frontends vulnerable to attacks by backends T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Several Linux PV device frontends are using the grant table interfaces for removing access rights of the backends in ways being subject to race conditions, resulting in potential data leaks, data corruption by malicious backends, and denial of service triggered by malicious backends: blkfront, netfront, scsifront and the gntalloc driver are testing whether a grant reference is still in use. If this is not the case, they assume that a following removal of the granted access will always succeed, which is not true in case the backend has mapped the granted page between those two operations. As a result the backend can keep access to the memory page of the guest no matter how the page will be used after the frontend I/O has finished. The xenbus driver has a similar problem, as it doesn't check the success of removing the granted access of a shared ring buffer. blkfront: CVE-2022-23036 netfront: CVE-2022-23037 scsifront: CVE-2022-23038 gntalloc: CVE-2022-23039 xenbus: CVE-2022-23040 blkfront, netfront, scsifront, usbfront, dmabuf, xenbus, 9p, kbdfront, and pvcalls are using a functionality to delay freeing a grant reference until it is no longer in use, but the freeing of the related data page is not synchronized with dropping the granted access. As a result the backend can keep access to the memory page even after it has been freed and then re-used for a different purpose. CVE-2022-23041 netfront will fail a BUG_ON() assertion if it fails to revoke access in the rx path. This will result in a Denial of Service (DoS) situation of the guest which can be triggered by the backend. CVE-2022-23042

CVSS 3.1 Base Score 7. CVSS Attack Vector: local. CVSS Attack Complexity: high. CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H).

CVSS 2.0 Base Score 4.4. CVSS Attack Vector: local. CVSS Attack Complexity: medium. CVSS Vector: (AV:L/AC:M/Au:N/C:P/I:P/A:P).

Demo Examples

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

CWE-362

This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account.


               
NotifyUser("New balance: $newbalance");
FatalError("Bad Transfer Amount");
FatalError("Insufficient Funds");

A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase().

Suppose the balance is initially 100.00. An attack could be constructed as follows:


               
PROGRAM-2 sends a request to update the database, setting the balance to 99.00

At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database.

To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

CWE-362

The following function attempts to acquire a lock in order to perform operations on a shared resource.


               
}
pthread_mutex_unlock(mutex);/* access shared resource */

However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.

In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting it to higher levels.


               
}
return pthread_mutex_unlock(mutex);
return result;
/* access shared resource */

Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

CWE-362

Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs.

Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario.

Stay updated

ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.

Get in touch

If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.