47%
10%
60%
In the Linux kernel, the following vulnerability has been resolved: i40e: fix race condition by adding filter's intermediate sync state Fix a race condition in the i40e driver that leads to MAC/VLAN filters becoming corrupted and leaking. Address the issue that occurs under heavy load when multiple threads are concurrently modifying MAC/VLAN filters by setting mac and port VLAN. 1. Thread T0 allocates a filter in i40e_add_filter() within i40e_ndo_set_vf_port_vlan(). 2. Thread T1 concurrently frees the filter in __i40e_del_filter() within i40e_ndo_set_vf_mac(). 3. Subsequently, i40e_service_task() calls i40e_sync_vsi_filters(), which refers to the already freed filter memory, causing corruption. Reproduction steps: 1. Spawn multiple VFs. 2. Apply a concurrent heavy load by running parallel operations to change MAC addresses on the VFs and change port VLANs on the host. 3. Observe errors in dmesg: "Error I40E_AQ_RC_ENOSPC adding RX filters on VF XX, please set promiscuous on manually for VF XX". Exact code for stable reproduction Intel can't open-source now. The fix involves implementing a new intermediate filter state, I40E_FILTER_NEW_SYNC, for the time when a filter is on a tmp_add_list. These filters cannot be deleted from the hash list directly but must be removed using the full process.
CVSS 3.1 Base Score 4.7. CVSS Attack Vector: local. CVSS Attack Complexity: high. CVSS Vector: (CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:H).
This code could be used in an e-commerce application that supports transfers between accounts. It takes the total amount of the transfer, sends it to the new account, and deducts the amount from the original account.
NotifyUser("New balance: $newbalance");FatalError("Bad Transfer Amount");FatalError("Insufficient Funds");
A race condition could occur between the calls to GetBalanceFromDatabase() and SendNewBalanceToDatabase().
Suppose the balance is initially 100.00. An attack could be constructed as follows:
PROGRAM-2 sends a request to update the database, setting the balance to 99.00
At this stage, the attacker should have a balance of 19.00 (due to 81.00 worth of transfers), but the balance is 99.00, as recorded in the database.
To prevent this weakness, the programmer has several options, including using a lock to prevent multiple simultaneous requests to the web application, or using a synchronization mechanism that includes all the code between GetBalanceFromDatabase() and SendNewBalanceToDatabase().
The following function attempts to acquire a lock in order to perform operations on a shared resource.
}
pthread_mutex_unlock(mutex);/* access shared resource */
However, the code does not check the value returned by pthread_mutex_lock() for errors. If pthread_mutex_lock() cannot acquire the mutex for any reason, the function may introduce a race condition into the program and result in undefined behavior.
In order to avoid data races, correctly written programs must check the result of thread synchronization functions and appropriately handle all errors, either by attempting to recover from them or reporting it to higher levels.
}
return pthread_mutex_unlock(mutex);return result;/* access shared resource */
Suppose a processor's Memory Management Unit (MMU) has 5 other shadow MMUs to distribute its workload for its various cores. Each MMU has the start address and end address of "accessible" memory. Any time this accessible range changes (as per the processor's boot status), the main MMU sends an update message to all the shadow MMUs.
Suppose the interconnect fabric does not prioritize such "update" packets over other general traffic packets. This introduces a race condition. If an attacker can flood the target with enough messages so that some of those attack packets reach the target before the new access ranges gets updated, then the attacker can leverage this scenario.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.