55%
18%
60%
In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix uninit-value in vxlan_vnifilter_dump() KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1]. If the length of the netlink message payload is less than sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes beyond the message. This can lead to uninit-value access. Fix this by returning an error in such situations. [1] BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786 netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317 __netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432 netlink_dump_start include/linux/netlink.h:340 [inline] rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline] rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882 netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542 rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4110 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205 kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587 __alloc_skb+0x347/0x7d0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1323 [inline] netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196 netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
CVSS 3.1 Base Score 5.5. CVSS Attack Vector: local. CVSS Attack Complexity: low. CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H).
Here, a boolean initiailized field is consulted to ensure that initialization tasks are only completed once. However, the field is mistakenly set to true during static initialization, so the initialization code is never reached.
}
initialized = true;// perform initialization tasks
The following code intends to limit certain operations to the administrator only.
}$uid = ExtractUserID($state);# do stuffDoAdminThings();
If the application is unable to extract the state information - say, due to a database timeout - then the $uid variable will not be explicitly set by the programmer. This will cause $uid to be regarded as equivalent to "0" in the conditional, allowing the original user to perform administrator actions. Even if the attacker cannot directly influence the state data, unexpected errors could cause incorrect privileges to be assigned to a user just by accident.
The following code intends to concatenate a string to a variable and print the string.
printf("%s", str);
This might seem innocent enough, but str was not initialized, so it contains random memory. As a result, str[0] might not contain the null terminator, so the copy might start at an offset other than 0. The consequences can vary, depending on the underlying memory.
If a null terminator is found before str[8], then some bytes of random garbage will be printed before the "hello world" string. The memory might contain sensitive information from previous uses, such as a password (which might occur as a result of CWE-14 or CWE-244). In this example, it might not be a big deal, but consider what could happen if large amounts of memory are printed out before the null terminator is found.
If a null terminator isn't found before str[8], then a buffer overflow could occur, since strcat will first look for the null terminator, then copy 12 bytes starting with that location. Alternately, a buffer over-read might occur (CWE-126) if a null terminator isn't found before the end of the memory segment is reached, leading to a segmentation fault and crash.
ExploitPedia is constantly evolving. Sign up to receive a notification when we release additional functionality.
If you'd like to report a bug or have any suggestions for improvements then please do get in touch with us using this form. We will get back to you as soon as we can.